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CTFIM ) & 2ft - D Tsing Gueye theory .-
The Ok ) model duality suggests that phases

without local order parameter Ceeg . the photo'm

Phase ) may
be understood more clearlyin

terms of dual variables .
Lets consider another

example :

H =  
- J E s ? Sf - he E six

i

Cij >

on square lattice .

This is very similar to the

0223 model with 2 n e'' O
,

*~NZ
.

Lets define dual variables anologously :

si si =Xiifi-a⇐#zjwhere if on the RHS refers to

sites of the dual lattice .

µ
×

Similarly ,
Si =

ZijKinzieTime
d#

One can readily check that the
"
k

commutation relations are satisfied : Xij2ij= - Zijxij



further , since

( sisiicsissksssaksisi
⇒

I I = X iz
X 23×34×41

Interpreting µ×~ e
it

,
pi ~

ein
&

the above constraint corresponds to D . E  =L

C Games 's law ) and the Hamiltonian is a Zz

Gause theory :

H =  
- J E X

is
- h§I2ijI Hx

- I

Hp
IE ~

N e cos

CDXA

)

with ITXij
= I C Gauss 's law D

. E  
= o )

±

One may
also express the original spin variables

Si
in terms of gauge theory variables :



5.
= siszszsssssi . . .

|,§µ##-
A

= X is

Xzz
X 34 - - -

- path - I

- = IT

Xij
One may

wonder if the path matters , since there

are infinite many
choices .

The answer
is no

,

due to the constraint IIX'is = I .

e. g . path -2 can be

obtained from path - I
/µFhftTµ##

a

by acting with

- path - 2

- I =ITK.
on site

colored green .

Phase Diagram :

-

In terms of original spin - variables
,

the

Phase diagram is determined straight - forwardly :

ferromagnet
,

paramagnetIT

is
> # o

Chisels

> HIT
= O



This implies that the dual garage theory must

also have two distinct phases .
However . since

5 is a non - local variable in terns of { X ,
2e }

,

there is no local order - parameter in the

guage theory .
How does one then characterize

the two phases of the gunge theory ?

Ans '
-

Most fundamentally ,
in the garage theory

Hamiltonian
,

the phase at his > > I has

topological order characterized by presence of

an yours as excitations above the ground state
,

outed ground stale degeneracy that depends on the

topology of the manifold
.

It also has long -

range entanglement .

In contrast
,

the gunge theory Hamiltonian at

hlj 42 corresponds to a phase without

Aug topological order
. Due to sharp distances

,

these two phases are necessarily separated bby
a quantum phase transition

.



Ground stale in the limit hey KI
:-

first consider h= O
.

The ground state is

I

=Tll→
>

i

i - e . all

spins
.

i point along tie

direction .this
state automatically satisfies the Gauss 's law?

This is a unique ground state on any manifold
.

Ce . g . a sphere or a torus )
.

The lowest energy

excited stale
,

consistent with the Gauss 's law is

obtained by flipping four spins from tu to

→ →  →

.

This costs  an energy
+8J .

- K "

↳§€g¥ These excitations can be located

←
→t→¥

anywhere , so there is a

degeneracy a N where N B the number of sites
.

Turning on the h term
,

these excitations wide

acquire kinetic energy .

A single action of http
creates an additional such excitation , so is

prohibit evey costly when Js > h .
One

has to go to second order in perturbation



theory to remain within the subspace of

excitations with energy
8J :

|µT⇒E# :
Action of

TIZLIZ
mores

-

the excitation ri ghwards
- to t } .

Therefore the low
energy Hamiltonian for the

2

excitations is : =yhIago
- where IS denotes

a rectangular loop of size 1×2 or 2×1 .

Another kind of excitation one can define is

two test charges created by artists :

t.ie#tTene.fE
e

To allow this excitation . we have relaxed the

Gauss i law at the and points of the string .

This excitation costs energy
2Jd where

I B the separation between changes .

⇒ charges are

'
confined

'

in this phase
.

They do not propagate freely .



Derivation
Lets denote the state corresponding to  a single  excitation

If localized on plaque He GR'
asIn >

.

The  effective Hamiltonian Heft within the

Subspace of single excitations If is given by

Sal Heft lb > = La I Hp lb >

+ Lal Hpl µ > SHIH pl b >
+  . . .

-

Ea - E µ

where Hp =  - F § LIZ B the plaque He term
,

& late> is a stale that doesnt lie within the

Subspace of single excitations
. The first  order

term Sal Hpl b > clearly vanishes .

The

nature of second order term depends on whether

the plaque these
' a '

,

6 b ' share an edge or not
.

first consider the case where they do

not share an edge :



HETE or ##Te
There dire two different kinds of state Imb .

IN> can either be the ground state 10 > ,
or

an excited state with two excitations .
For

the matrix  element at second - order to be

non - zero ,
this excited state must be la ,

b >

i - e . a state that has excitations at both a

and b .

The energy
difference E Cla > 7 - Ella ,bD

=  - 8J .

⇒ L at Heff I b > ILa I - h IIe AZ - he e ,
la ,

b > x

-

< as bi - hotcake
- hate ,

lb >

-

÷

+ Sal - hteaz
- hits 107 ×

-

SO I - hI←a2
- hottest b >-8J



= h2 - h2 = O
.

Perfect  cancellation
.

- -

8J 8J

Therefore .

this term vanishes . In fact ,  on general

grounds we expect that when a ,
b are

Separated by distance d
,

one would need to

go
to It I order in perturbation theory .

Now .

let's consider the case when a , b sit

next to each other

:
/3¥fE# .

One off the
-

intermediate states continue to be the ground

state to >
,

and it's contribution to the

matrix element Lal Heftlb > B unchanged .

But the other Guier mediate state now is

a
'

merger
' of la >

.
lb > : /§##_ .

-

The energy diff .
Ea -Em = 2x ( 4 -6) J

.

-  - 4J .

This ,
the cancellation  B avoided .

⇒ saluaalb > = -¢h÷tgh÷ = - SIT

when a , b shave an edge
, and zero otherwise

.



Quasi particles and their statistics .

.

-

The eneitatious of the form If are the only
well defined quasi particles when J > > h

. They will

form a band with dispersion

EK~J-2gtdhfwfekf.gg

when he increases
. they may condense leading

to a quantum phase transition althoughthis leaking
order dispersion is not reliable when her J

.

What about the statistics of these excitations
.

One can ask two questions :

(a) Statistical Berry phase when two excitations

are exchanged .

( b ) Statistical Berry phase when a quasi particle

If is taken around a test charge fr .

Since charges are confines ,
this isn't very

physical .

So
,

we will only consider la )
.

following Levin
,

Wen C 20033
.

to calculate the

statistical Berry phase one needs to compare

Berry phase between two different Paths . Denoting
Iij as the operator that movers g. p . from j to i :



process ① I
;e tent;eIej taili. j .  -

- - Y

k a I
•-7 •

Particles

14/32445 exchanged

i • •

j
n n a a a

process ② tjetejtia ten tri Hi, j ,
- - - 7by:-PoneParticles notKitts -

•
exchanged ,

a
Do

I 3

j

We assume there are no quasi particles at sites
k

, I in the initial state Ii
, j ,  

-

- - 7 .

The relative phase acquired by the wave - fh between

① and ② is the statistical Berry phase C =

exchange statistics )
.

For fermions
.

this phase would

be - I
,

and for bosons I Laud e for

Abel ion
anyone ,

where O can be  any angle ) .



We are now in a position to answer the

question we posed .

Self - statistics of quasi particles II } :

- a

As discussed above the analog of operator tij

that moves a quasi particle from j to  i

µ
>

µZ
is µ47pie

.

Since all Me 's commute with

pet pez

each other ⇒ No Berry phase difference

between the two paths above ⇒ statistical

Berry phase = O ⇒ excitations are bosons

.


